|
|
|
@ -14,7 +14,7 @@ def connect_Y(x, y, Ys, Yp, Y): |
|
|
|
Y[x, x] += Ys + Yp |
|
|
|
Y[y, y] += Ys + Yp |
|
|
|
|
|
|
|
def spec(n, Y, Vn): |
|
|
|
def system_matrix(n, Y, Vn): |
|
|
|
S = np.zeros((n, n)) |
|
|
|
for i in range(n): |
|
|
|
for k in range(n): |
|
|
|
@ -25,6 +25,35 @@ def spec(n, Y, Vn): |
|
|
|
S[i, k] *= Vn**2 * Y[i, k] |
|
|
|
return S |
|
|
|
|
|
|
|
def line_coor(n): |
|
|
|
tab = [] |
|
|
|
i = 0 |
|
|
|
k = 1 |
|
|
|
while i < n: |
|
|
|
|
|
|
|
while k < n: |
|
|
|
tab += [[i, k]] |
|
|
|
k += 1 |
|
|
|
i += 1 |
|
|
|
k = i + 1 |
|
|
|
|
|
|
|
return tab |
|
|
|
|
|
|
|
print(line_coor(4)) |
|
|
|
|
|
|
|
def line_matrix(Y): |
|
|
|
n = len(Y) |
|
|
|
t = line_coor(n) |
|
|
|
lS = np.zeros((len(t), n)) |
|
|
|
|
|
|
|
for i in range(len(t)): |
|
|
|
e = t[i] |
|
|
|
y = - Y[e[0], e[1]] |
|
|
|
lS[i, e[0]] = y |
|
|
|
lS[i, e[1]] = - y |
|
|
|
|
|
|
|
return lS |
|
|
|
|
|
|
|
def delta_select(i, S): |
|
|
|
S = np.delete(S, (i), axis=0) |
|
|
|
S = np.delete(S, (i), axis=1) |
|
|
|
@ -39,6 +68,9 @@ def complete_data(P, delta, i): |
|
|
|
nP = np.array(P[:i].tolist() + [-np.sum(P)] + P[i:].tolist()) |
|
|
|
return ndelta, nP |
|
|
|
|
|
|
|
# Vn |
|
|
|
Vn = 2e5 |
|
|
|
|
|
|
|
# Vecteur des puissances |
|
|
|
P = np.array([1000, -500, -250, -250]) |
|
|
|
P = P * 1e6 # Passage en MW |
|
|
|
@ -53,13 +85,13 @@ connect_Y(3, 0, 0.05, 0, Y) |
|
|
|
print("Admittance matrix :", Y) |
|
|
|
|
|
|
|
# Mise en place du système linéaire à résoudre |
|
|
|
S = spec(4, Y, 2e5) # dim n |
|
|
|
S = system_matrix(4, Y, Vn) # dim n |
|
|
|
S = delta_select(3, S) # dim n-1, sélection de l'angle de transport de référence (delta_3) |
|
|
|
print("System matrix :", S) |
|
|
|
|
|
|
|
# Sélection des puissances (dimension n-1) |
|
|
|
P = power_select(3, P) |
|
|
|
print("Puissances de référence : ", P) |
|
|
|
print("Power input : ", P) |
|
|
|
|
|
|
|
# Résolution (dimension n-1) |
|
|
|
invS = np.linalg.inv(S) |
|
|
|
@ -70,5 +102,17 @@ delta = np.dot(invS, P) |
|
|
|
|
|
|
|
# Ajout de l'angle de transport d'origine et de la puissance associée (on repasse en dim n) |
|
|
|
ndelta, nP = complete_data(P, delta, 3) |
|
|
|
print("Power input :", nP) |
|
|
|
print("Delta (rad) :", ndelta * 180 / 3.1415) |
|
|
|
print("Power :", nP) |
|
|
|
print("Delta (rad) :", ndelta * 180 / 3.1415) |
|
|
|
|
|
|
|
# Calcul de la matrice de ligne |
|
|
|
lS = line_matrix(Y) |
|
|
|
print("Line matrix : ", lS) |
|
|
|
|
|
|
|
# Calcul des puissances de lignes |
|
|
|
line_power = Vn**2 * np.dot(lS, ndelta) |
|
|
|
lcoor = line_coor(len(ndelta)) |
|
|
|
disp_line = [] |
|
|
|
for i in range(len(line_power)): |
|
|
|
disp_line += [lcoor[i] + [line_power[i]]] |
|
|
|
print("Line power : ", disp_line) |
|
|
|
|