\relax \catcode `:\active \catcode `;\active \catcode `!\active \catcode `?\active \select@language{french} \@writefile{toc}{\select@language{french}} \@writefile{lof}{\select@language{french}} \@writefile{lot}{\select@language{french}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Diff\IeC {\'e}rentes positions possible de points par rapport \IeC {\`a} $A$ et $B$\relax }}{3}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:positionsC}{{1}{3}} \@writefile{toc}{\contentsline {part}{I\hspace {1em}Objectifs de ce TL}{3}} \@writefile{toc}{\contentsline {part}{II\hspace {1em}G\IeC {\'e}n\IeC {\'e}ration de carte routi\IeC {\`e}re r\IeC {\'e}aliste}{3}} \@writefile{toc}{\contentsline {section}{\numberline {1}Condition pour un graphe de Gabriel}{3}} \newlabel{eq:condArete}{{1}{3}} \@writefile{toc}{\contentsline {paragraph}{preuve :}{3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Mise en pratique : graphe de Gabriel et de voisinage relatif}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Cr\IeC {\'e}ation de graphe de Gabriel et de voisinage relatif}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Graphe de gabriel\relax }}{4}} \newlabel{fig:2_4_gabriel}{{2}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Graphe de voisinage realtif\relax }}{5}} \newlabel{fig:2_4_gvr}{{3}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces R\IeC {\'e}seau g\IeC {\'e}n\IeC {\'e}r\IeC {\'e}\relax }}{6}} \newlabel{fig:2_5}{{4}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}G\IeC {\'e}n\IeC {\'e}ration d'un r\IeC {\'e}seau}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Temps de g\IeC {\'e}n\IeC {\'e}ration d'un r\IeC {\'e}seau}{6}} \@writefile{toc}{\contentsline {section}{\numberline {3}Triangulation de Delaunay}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Pratique}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Aspect th\IeC {\'e}orique}{6}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.1}Condition pour un graphe de Delaunay}{6}} \@writefile{toc}{\contentsline {paragraph}{preuve:}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Cas o\IeC {\`u} le graphe de Delaunay n'est pas planaire.\relax }}{7}} \newlabel{fig:delaunayPasPlanaire}{{5}{7}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2}Le graphe de Delaunay est planaire}{7}} \@writefile{toc}{\contentsline {paragraph}{preuve}{7}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3}Le graphe de Delaunay est une triangulation}{7}} \@writefile{toc}{\contentsline {paragraph}{preuve}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Maille polygonale.\relax }}{8}} \newlabel{fig:maillePolygonale}{{6}{8}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.4}Condition sur les faces}{8}} \@writefile{toc}{\contentsline {paragraph}{preuve}{8}} \@writefile{toc}{\contentsline {part}{III\hspace {1em}Algorithme de Dijkstra pour la recherche du plus court chemin}{8}}