|
|
@ -12,9 +12,15 @@ using namespace std; |
|
|
|
|
|
|
|
|
class Traite_image { |
|
|
class Traite_image { |
|
|
public: |
|
|
public: |
|
|
|
|
|
const static int SENSITIVITY_VALUE = 30; |
|
|
|
|
|
const static int BLUR_SIZE = 10; |
|
|
|
|
|
|
|
|
Mat prev; |
|
|
Mat prev; |
|
|
bool first = true; |
|
|
bool first = true; |
|
|
int resize_f = 8; |
|
|
int resize_f = 1; |
|
|
|
|
|
|
|
|
|
|
|
int theObject[2] = {0,0}; |
|
|
|
|
|
Rect objectBoundingRectangle = Rect(0,0,0,0); |
|
|
|
|
|
|
|
|
ros::NodeHandle n; |
|
|
ros::NodeHandle n; |
|
|
|
|
|
|
|
|
@ -47,42 +53,87 @@ class Traite_image { |
|
|
Mat next; |
|
|
Mat next; |
|
|
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
cvtColor(next, next, CV_BGR2GRAY); |
|
|
cvtColor(next, next, CV_BGR2GRAY); |
|
|
Mat output; // (input.rows, input.cols, CV_32FC2);
|
|
|
Mat output = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
ROS_INFO("got input"); |
|
|
//ROS_INFO("got input");
|
|
|
if (first) { |
|
|
if (first) { |
|
|
prev = next.clone(); |
|
|
prev = next.clone(); |
|
|
first = false; |
|
|
first = false; |
|
|
ROS_INFO("first done"); |
|
|
ROS_INFO("first done"); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
//unsigned int size = input.rows * input.cols * 3;
|
|
|
// Subtract the 2 last frames and threshold them
|
|
|
//unsigned char* begin_input = (unsigned char*)(input.data);
|
|
|
Mat thres; |
|
|
//unsigned char* end_input = (unsigned char*)(input.data) + size;
|
|
|
absdiff(prev,next,thres); |
|
|
//unsigned char* out = (unsigned char*)(output.data);
|
|
|
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY); |
|
|
//unsigned char* in = begin_input;
|
|
|
// Blur to eliminate noise
|
|
|
|
|
|
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE)); |
|
|
// This is an efficient way to process each channel in each pixel,
|
|
|
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY); |
|
|
// with an iterator taste.
|
|
|
searchForMovement(thres, output); |
|
|
//while(in != end_input) {
|
|
|
|
|
|
// *(out++) = *(ptr_prev) - *(in);
|
|
|
|
|
|
// *(ptr_prev++) = *(in++);
|
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
|
|
Mat_<Point2f> flow; |
|
|
|
|
|
Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1(); |
|
|
|
|
|
|
|
|
|
|
|
tvl1->calc(prev, next, flow); |
|
|
|
|
|
|
|
|
|
|
|
drawOpticalFlow(flow, output); |
|
|
|
|
|
|
|
|
|
|
|
pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
// bridge_input is handled by a smart-pointer. No explicit delete needed.
|
|
|
// bridge_input is handled by a smart-pointer. No explicit delete needed.
|
|
|
|
|
|
|
|
|
ROS_INFO("pub"); |
|
|
//ROS_INFO("pub");
|
|
|
|
|
|
|
|
|
prev = next.clone(); |
|
|
prev = next.clone(); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
//int to string helper function
|
|
|
|
|
|
string intToString(int number){ |
|
|
|
|
|
|
|
|
|
|
|
//this function has a number input and string output
|
|
|
|
|
|
std::stringstream ss; |
|
|
|
|
|
ss << number; |
|
|
|
|
|
return ss.str(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void searchForMovement(Mat thresholdImage, Mat &cameraFeed){ |
|
|
|
|
|
//notice how we use the '&' operator for objectDetected and cameraFeed. This is because we wish
|
|
|
|
|
|
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
|
|
|
|
|
//eg. we draw to the cameraFeed to be displayed in the main() function.
|
|
|
|
|
|
bool objectDetected = false; |
|
|
|
|
|
Mat temp; |
|
|
|
|
|
thresholdImage.copyTo(temp); |
|
|
|
|
|
//these two vectors needed for output of findContours
|
|
|
|
|
|
vector< vector<Point> > contours; |
|
|
|
|
|
vector<Vec4i> hierarchy; |
|
|
|
|
|
//find contours of filtered image using openCV findContours function
|
|
|
|
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
|
|
|
|
|
|
|
|
//if contours vector is not empty, we have found some objects
|
|
|
|
|
|
if(contours.size()>0)objectDetected=true; |
|
|
|
|
|
else objectDetected = false; |
|
|
|
|
|
|
|
|
|
|
|
if(objectDetected){ |
|
|
|
|
|
//the largest contour is found at the end of the contours vector
|
|
|
|
|
|
//we will simply assume that the biggest contour is the object we are looking for.
|
|
|
|
|
|
vector< vector<Point> > largestContourVec; |
|
|
|
|
|
largestContourVec.push_back(contours.at(contours.size()-1)); |
|
|
|
|
|
//make a bounding rectangle around the largest contour then find its centroid
|
|
|
|
|
|
//this will be the object's final estimated position.
|
|
|
|
|
|
objectBoundingRectangle = boundingRect(largestContourVec.at(0)); |
|
|
|
|
|
int xpos = objectBoundingRectangle.x+objectBoundingRectangle.width/2; |
|
|
|
|
|
int ypos = objectBoundingRectangle.y+objectBoundingRectangle.height/2; |
|
|
|
|
|
|
|
|
|
|
|
//update the objects positions by changing the 'theObject' array values
|
|
|
|
|
|
theObject[0] = xpos , theObject[1] = ypos; |
|
|
|
|
|
} |
|
|
|
|
|
//make some temp x and y variables so we dont have to type out so much
|
|
|
|
|
|
int x = theObject[0]; |
|
|
|
|
|
int y = theObject[1]; |
|
|
|
|
|
|
|
|
|
|
|
//draw some crosshairs around the object
|
|
|
|
|
|
circle(cameraFeed,Point(x,y),20,Scalar(0,255,0),2); |
|
|
|
|
|
line(cameraFeed,Point(x,y),Point(x,y-25),Scalar(0,255,0),2); |
|
|
|
|
|
line(cameraFeed,Point(x,y),Point(x,y+25),Scalar(0,255,0),2); |
|
|
|
|
|
line(cameraFeed,Point(x,y),Point(x-25,y),Scalar(0,255,0),2); |
|
|
|
|
|
line(cameraFeed,Point(x,y),Point(x+25,y),Scalar(0,255,0),2); |
|
|
|
|
|
|
|
|
|
|
|
//write the position of the object to the screen
|
|
|
|
|
|
putText(cameraFeed,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
inline bool isFlowCorrect(Point2f u) |
|
|
inline bool isFlowCorrect(Point2f u) |
|
|
{ |
|
|
{ |
|
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; |
|
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; |
|
|
|