|
|
|
@ -16,8 +16,9 @@ class Traite_image { |
|
|
|
const static int BLUR_SIZE = 10; |
|
|
|
|
|
|
|
Mat prev; |
|
|
|
Mat last_T; |
|
|
|
bool first = true; |
|
|
|
int resize_f = 1; |
|
|
|
int resize_f = 4; |
|
|
|
|
|
|
|
int theObject[2] = {0,0}; |
|
|
|
Rect objectBoundingRectangle = Rect(0,0,0,0); |
|
|
|
@ -51,9 +52,10 @@ class Traite_image { |
|
|
|
//Mat& input = const_cast<Mat&>(bridge_input->image);
|
|
|
|
const Mat& input = bridge_input->image; |
|
|
|
Mat next; |
|
|
|
Mat next_grey; |
|
|
|
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
|
cvtColor(next, next, CV_BGR2GRAY); |
|
|
|
Mat output = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
|
cvtColor(next, next_grey, CV_BGR2GRAY); |
|
|
|
Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
|
//ROS_INFO("got input");
|
|
|
|
if (first) { |
|
|
|
prev = next.clone(); |
|
|
|
@ -61,14 +63,16 @@ class Traite_image { |
|
|
|
ROS_INFO("first done"); |
|
|
|
} |
|
|
|
|
|
|
|
stabiliseImg(prev, next, output); |
|
|
|
|
|
|
|
// Subtract the 2 last frames and threshold them
|
|
|
|
Mat thres; |
|
|
|
absdiff(prev,next,thres); |
|
|
|
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY); |
|
|
|
//Mat thres;
|
|
|
|
//absdiff(prev,next,thres);
|
|
|
|
//threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
|
|
|
// Blur to eliminate noise
|
|
|
|
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE)); |
|
|
|
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY); |
|
|
|
searchForMovement(thres, output); |
|
|
|
//blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
|
|
|
//threshold(thres, output, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
|
|
|
//searchForMovement(thres, output);
|
|
|
|
|
|
|
|
pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
|
// bridge_input is handled by a smart-pointer. No explicit delete needed.
|
|
|
|
@ -87,6 +91,73 @@ class Traite_image { |
|
|
|
return ss.str(); |
|
|
|
} |
|
|
|
|
|
|
|
void stabiliseImg(Mat prev, Mat cur, Mat &output){ |
|
|
|
Mat prev_grey, cur_grey; |
|
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
|
Point2f srcTri[3]; |
|
|
|
Point2f dstTri[3]; |
|
|
|
Mat warp_mat( 2, 3, CV_32FC1 ); |
|
|
|
|
|
|
|
// vector from prev to cur
|
|
|
|
vector <Point2f> prev_corner, cur_corner; |
|
|
|
vector <Point2f> prev_corner2, cur_corner2; |
|
|
|
vector <uchar> status; |
|
|
|
vector <float> err; |
|
|
|
|
|
|
|
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30); |
|
|
|
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); |
|
|
|
|
|
|
|
// weed out bad matches
|
|
|
|
for(size_t i=0; i < status.size(); i++) { |
|
|
|
if(status[i]) { |
|
|
|
prev_corner2.push_back(prev_corner[i]); |
|
|
|
cur_corner2.push_back(cur_corner[i]); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// translation + rotation only
|
|
|
|
Mat T(2, 3, CV_32FC1); |
|
|
|
T = estimateRigidTransform(prev_corner2, cur_corner2, false); // false = rigid transform, no scaling/shearing
|
|
|
|
|
|
|
|
// cv::Mat H = cv::Mat(3,3,T.type());
|
|
|
|
// H.at<double>(0,0) = T.at<double>(0,0);
|
|
|
|
// H.at<double>(0,1) = T.at<double>(0,1);
|
|
|
|
// H.at<double>(0,2) = T.at<double>(0,2);
|
|
|
|
|
|
|
|
// H.at<double>(1,0) = T.at<double>(1,0);
|
|
|
|
// H.at<double>(1,1) = T.at<double>(1,1);
|
|
|
|
// H.at<double>(1,2) = T.at<double>(1,2);
|
|
|
|
|
|
|
|
// H.at<double>(2,0) = 0.0;
|
|
|
|
// H.at<double>(2,1) = 0.0;
|
|
|
|
// H.at<double>(2,2) = 1.0;
|
|
|
|
|
|
|
|
|
|
|
|
// in rare cases no transform is found. We'll just use the last known good transform.
|
|
|
|
if(T.data == NULL) { |
|
|
|
last_T.copyTo(T); |
|
|
|
} |
|
|
|
T.copyTo(last_T); |
|
|
|
|
|
|
|
/// Set your 3 points to calculate the Affine Transform
|
|
|
|
srcTri[0] = Point2f( 0,0 ); |
|
|
|
srcTri[1] = Point2f( prev.cols, 0 ); |
|
|
|
srcTri[2] = Point2f( 0, prev.rows ); |
|
|
|
|
|
|
|
dstTri[0] = Point2f( prev.cols / 2, prev.rows / 2 ); |
|
|
|
dstTri[1] = Point2f( prev.cols * 3 / 2, prev.rows / 2); |
|
|
|
dstTri[2] = Point2f( prev.cols / 2, prev.rows * 3 / 2 ); |
|
|
|
|
|
|
|
/// Get the Affine Transform
|
|
|
|
warp_mat = getAffineTransform( srcTri, dstTri ); |
|
|
|
warpAffine(prev,output,T,cv::Size(prev.cols+cur.cols,prev.rows+cur.rows)); |
|
|
|
warpAffine(output,output,warp_mat,cv::Size(prev.cols+cur.cols,prev.rows+cur.rows)); |
|
|
|
warpAffine(cur,cur,warp_mat,cv::Size(prev.cols+cur.cols,prev.rows+cur.rows)); |
|
|
|
//Mat half(output, cv::Rect(0, 0,cur.cols,cur.rows));
|
|
|
|
cur.copyTo(output, cur); |
|
|
|
} |
|
|
|
|
|
|
|
void searchForMovement(Mat thresholdImage, Mat &cameraFeed){ |
|
|
|
//notice how we use the '&' operator for objectDetected and cameraFeed. This is because we wish
|
|
|
|
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
|
|
|
|