|
|
|
@ -17,18 +17,24 @@ class Traite_image { |
|
|
|
const static int THRESHOLD_DETECT_SENSITIVITY = 10; |
|
|
|
const static int BLUR_SIZE = 5; |
|
|
|
const static int THRESHOLD_MOV = 5; |
|
|
|
const static int MOVEMENT_THRES = 0.1; |
|
|
|
constexpr static float MOVEMENT_THRES = 0.1; |
|
|
|
|
|
|
|
constexpr static float FLOW_MIN_QUAL = 0.01; |
|
|
|
const static int FLOW_MIN_DIST = 20; |
|
|
|
|
|
|
|
|
|
|
|
Mat prev; |
|
|
|
Mat last_T; |
|
|
|
|
|
|
|
// Stabilisation transformation matrices
|
|
|
|
Mat T, last_T; |
|
|
|
|
|
|
|
bool first = true; |
|
|
|
|
|
|
|
// Features vectors
|
|
|
|
vector <Point2f> prev_ftr, cur_ftr; |
|
|
|
|
|
|
|
// Downsize factor
|
|
|
|
int resize_f = 2; |
|
|
|
int resize_f = 1; |
|
|
|
|
|
|
|
int theObject[2] = {0,0}; |
|
|
|
Rect objectBoundingRectangle = Rect(0,0,0,0); |
|
|
|
@ -75,10 +81,10 @@ class Traite_image { |
|
|
|
|
|
|
|
Mat next_stab; |
|
|
|
stabiliseImg(prev, next, next_stab); |
|
|
|
Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4); |
|
|
|
Mat next_stab_cropped = next_stab(myROI); |
|
|
|
Mat prev_cropped = prev(myROI); |
|
|
|
trackingOptFlow(prev_cropped, next_stab_cropped, output); |
|
|
|
trackingOptFlow(prev, next_stab, next_stab); |
|
|
|
Mat next_stab2; |
|
|
|
stabiliseImg(prev, next, next_stab2); |
|
|
|
trackingOptFlow(prev, next_stab2, output); |
|
|
|
//searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
|
|
|
|
|
|
|
|
|
|
|
|
@ -112,7 +118,7 @@ class Traite_image { |
|
|
|
vector <uchar> status; |
|
|
|
vector <float> err; |
|
|
|
|
|
|
|
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30); |
|
|
|
goodFeaturesToTrack(prev_grey, prev_corner, 200, FLOW_MIN_QUAL, FLOW_MIN_DIST); |
|
|
|
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); |
|
|
|
|
|
|
|
// weed out bad matches
|
|
|
|
@ -125,12 +131,12 @@ class Traite_image { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
|
|
|
T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
|
|
|
|
|
|
|
if(T.data == NULL) { |
|
|
|
if(T.data == NULL) |
|
|
|
last_T.copyTo(T); |
|
|
|
} |
|
|
|
T.copyTo(last_T); |
|
|
|
else |
|
|
|
T.copyTo(last_T); |
|
|
|
|
|
|
|
Mat cur2; |
|
|
|
|
|
|
|
@ -139,115 +145,6 @@ class Traite_image { |
|
|
|
cur2.copyTo(output); |
|
|
|
} |
|
|
|
|
|
|
|
void searchForMovement(Mat prev, Mat cur, Mat &output){ |
|
|
|
Mat cur_grey, prev_grey; |
|
|
|
cur.copyTo(output); |
|
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
|
|
|
|
|
// Subtract the 2 last frames and threshold them
|
|
|
|
Mat thres; |
|
|
|
absdiff(prev_grey,cur_grey,thres); |
|
|
|
threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); |
|
|
|
// Blur to eliminate noise
|
|
|
|
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE)); |
|
|
|
threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); |
|
|
|
|
|
|
|
//notice how we use the '&' operator for objectDetected and output. This is because we wish
|
|
|
|
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
|
|
|
//eg. we draw to the output to be displayed in the main() function.
|
|
|
|
bool objectDetected = false; |
|
|
|
Mat temp; |
|
|
|
thres.copyTo(temp); |
|
|
|
//these two vectors needed for output of findContours
|
|
|
|
vector< vector<Point> > contours; |
|
|
|
vector<Vec4i> hierarchy; |
|
|
|
//find contours of filtered image using openCV findContours function
|
|
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
|
|
|
|
//if contours vector is not empty, we have found some objects
|
|
|
|
if(contours.size()>0)objectDetected=true; |
|
|
|
else objectDetected = false; |
|
|
|
|
|
|
|
if(objectDetected){ |
|
|
|
//the largest contour is found at the end of the contours vector
|
|
|
|
//we will simply assume that the biggest contour is the object we are looking for.
|
|
|
|
vector< vector<Point> > largestContourVec; |
|
|
|
largestContourVec.push_back(contours.at(contours.size()-1)); |
|
|
|
//make a bounding rectangle around the largest contour then find its centroid
|
|
|
|
//this will be the object's final estimated position.
|
|
|
|
objectBoundingRectangle = boundingRect(largestContourVec.at(0)); |
|
|
|
} |
|
|
|
//make some temp x and y variables so we dont have to type out so much
|
|
|
|
int x = objectBoundingRectangle.x; |
|
|
|
int y = objectBoundingRectangle.y; |
|
|
|
int width = objectBoundingRectangle.width; |
|
|
|
int height = objectBoundingRectangle.height; |
|
|
|
|
|
|
|
//draw a rectangle around the object
|
|
|
|
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2); |
|
|
|
|
|
|
|
//write the position of the object to the screen
|
|
|
|
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); |
|
|
|
} |
|
|
|
|
|
|
|
void searchForMovementOptFlow(Mat prev, Mat cur, Mat &output){ |
|
|
|
Mat cur_grey, prev_grey; |
|
|
|
cur.copyTo(output); |
|
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
|
|
|
|
|
Mat flow; |
|
|
|
calcOpticalFlowFarneback(prev_grey, cur_grey, flow, 0.5, 3, 15, 3, 5, 1.2, 0); |
|
|
|
vector<Mat> flow_coord(2); |
|
|
|
Mat flow_norm, angle; |
|
|
|
split(flow, flow_coord); |
|
|
|
cartToPolar(flow_coord[0], flow_coord[1], flow_norm, angle); |
|
|
|
|
|
|
|
//threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
|
|
|
// Blur to eliminate noise
|
|
|
|
blur(flow_norm, flow_norm, Size(BLUR_SIZE, BLUR_SIZE)); |
|
|
|
threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); |
|
|
|
flow_norm.convertTo(flow_norm, CV_8U); |
|
|
|
|
|
|
|
bool objectDetected = false; |
|
|
|
Mat temp; |
|
|
|
flow_norm.copyTo(temp); |
|
|
|
//these two vectors needed for output of findContours
|
|
|
|
vector< vector<Point> > contours; |
|
|
|
vector<Vec4i> hierarchy; |
|
|
|
//find contours of filtered image using openCV findContours function
|
|
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
|
|
|
|
//if contours vector is not empty, we have found some objects
|
|
|
|
if(contours.size()>0)objectDetected=true; |
|
|
|
else objectDetected = false; |
|
|
|
|
|
|
|
if(objectDetected){ |
|
|
|
//the largest contour is found at the end of the contours vector
|
|
|
|
//we will simply assume that the biggest contour is the object we are looking for.
|
|
|
|
vector< vector<Point> > largestContourVec; |
|
|
|
largestContourVec.push_back(contours.at(contours.size()-1)); |
|
|
|
//make a bounding rectangle around the largest contour then find its centroid
|
|
|
|
//this will be the object's final estimated position.
|
|
|
|
objectBoundingRectangle = boundingRect(largestContourVec.at(0)); |
|
|
|
} |
|
|
|
//make some temp x and y variables so we dont have to type out so much
|
|
|
|
int x = objectBoundingRectangle.x; |
|
|
|
int y = objectBoundingRectangle.y; |
|
|
|
int width = objectBoundingRectangle.width; |
|
|
|
int height = objectBoundingRectangle.height; |
|
|
|
|
|
|
|
//draw a rectangle around the object
|
|
|
|
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2); |
|
|
|
|
|
|
|
//write the position of the object to the screen
|
|
|
|
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void warpPoints(vector<Point2f> p, vector<Point2f> &p_warp, Mat T, bool invert=false) { |
|
|
|
if(invert) |
|
|
|
invertAffineTransform(T, T); |
|
|
|
@ -266,17 +163,27 @@ class Traite_image { |
|
|
|
} |
|
|
|
|
|
|
|
void trackingOptFlow(Mat prev, Mat cur, Mat &output) { |
|
|
|
vector <Point2f> curc_stab; |
|
|
|
cur.copyTo(output); |
|
|
|
vector <Point2f> cur_ftr_stab; |
|
|
|
|
|
|
|
Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
|
|
|
ROS_INFO("ready to warp"); |
|
|
|
warpPoints(cur_ftr, curc_stab, T, true); |
|
|
|
ROS_INFO("warped"); |
|
|
|
if(T.data == NULL) |
|
|
|
last_T.copyTo(T); |
|
|
|
else |
|
|
|
T.copyTo(last_T); |
|
|
|
|
|
|
|
warpPoints(cur_ftr, cur_ftr_stab, T, true); |
|
|
|
|
|
|
|
vector <Point2f> objects; |
|
|
|
for(size_t i=0; i < prev_ftr.size(); ++i) { |
|
|
|
float flow_norm = norm(prev_ftr[i] - cur_ftr[i]) / prev.size().height; |
|
|
|
if(flow_norm > MOVEMENT_THRES) |
|
|
|
objects.push_back(cur_ftr[i]); |
|
|
|
float flow_norm = norm(prev_ftr[i] - cur_ftr_stab[i]) / prev.size().height; |
|
|
|
line(output, prev_ftr[i], cur_ftr[i], Scalar(200,0,0),1); |
|
|
|
line(output, prev_ftr[i], cur_ftr_stab[i], Scalar(0,200,0),1); |
|
|
|
if(flow_norm > MOVEMENT_THRES) { |
|
|
|
objects.push_back(cur_ftr_stab[i]); |
|
|
|
prev_ftr.erase(prev_ftr.begin() + i); |
|
|
|
cur_ftr.erase(cur_ftr.begin() + i); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
for(size_t i=0; i < objects.size(); ++i) { |
|
|
|
|