|
|
@ -17,12 +17,13 @@ class Traite_image { |
|
|
const static int THRESHOLD_DETECT_SENSITIVITY = 10; |
|
|
const static int THRESHOLD_DETECT_SENSITIVITY = 10; |
|
|
const static int BLUR_SIZE = 5; |
|
|
const static int BLUR_SIZE = 5; |
|
|
const static int THRESHOLD_MOV = 5; |
|
|
const static int THRESHOLD_MOV = 5; |
|
|
|
|
|
const static int crop_ratio = 8; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat prev; |
|
|
Mat prev; |
|
|
Mat last_T; |
|
|
Mat last_T; |
|
|
bool first = true; |
|
|
bool first = true; |
|
|
int resize_f = 2; |
|
|
int resize_f = 1; |
|
|
|
|
|
|
|
|
int theObject[2] = {0,0}; |
|
|
int theObject[2] = {0,0}; |
|
|
Rect objectBoundingRectangle = Rect(0,0,0,0); |
|
|
Rect objectBoundingRectangle = Rect(0,0,0,0); |
|
|
@ -35,10 +36,22 @@ class Traite_image { |
|
|
image_transport::Subscriber sub; |
|
|
image_transport::Subscriber sub; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Traite_image() : n("~"),it(n) { |
|
|
Traite_image(bool sim) : n("~"),it(n) { |
|
|
pub_img = it.advertise("/image_out", 1); |
|
|
String img_out, cmd_out, img_in; |
|
|
pub_cmd = n.advertise<geometry_msgs::Twist>("/vrep/drone/cmd_vel", 1); |
|
|
if (!sim) { |
|
|
sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed")); |
|
|
img_out = "/image_out"; |
|
|
|
|
|
cmd_out = "/bebop/cmd_vel"; |
|
|
|
|
|
img_in = "/bebop/image_raw"; |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
img_out = "/image_out"; |
|
|
|
|
|
cmd_out = "/vrep/drone/cmd_vel"; |
|
|
|
|
|
img_in = "/usb_cam/image_raw"; |
|
|
|
|
|
} |
|
|
|
|
|
pub_img = it.advertise(img_out, 1); |
|
|
|
|
|
pub_cmd = n.advertise<geometry_msgs::Twist>(cmd_out, 1); |
|
|
|
|
|
sub = it.subscribe(img_in, 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed")); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -69,7 +82,6 @@ class Traite_image { |
|
|
|
|
|
|
|
|
Mat next_stab; |
|
|
Mat next_stab; |
|
|
stabiliseImg(prev, next, next_stab); |
|
|
stabiliseImg(prev, next, next_stab); |
|
|
int crop_ratio = 6; |
|
|
|
|
|
float crop_x = next_stab.size().width/crop_ratio; |
|
|
float crop_x = next_stab.size().width/crop_ratio; |
|
|
float crop_y = next_stab.size().height/crop_ratio; |
|
|
float crop_y = next_stab.size().height/crop_ratio; |
|
|
float crop_w = next_stab.size().width*(1-2.0/crop_ratio); |
|
|
float crop_w = next_stab.size().width*(1-2.0/crop_ratio); |
|
|
@ -77,7 +89,7 @@ class Traite_image { |
|
|
Rect myROI(crop_x, crop_y, crop_w, crop_h); |
|
|
Rect myROI(crop_x, crop_y, crop_w, crop_h); |
|
|
Mat next_stab_cropped = next_stab(myROI); |
|
|
Mat next_stab_cropped = next_stab(myROI); |
|
|
Mat prev_cropped = prev(myROI); |
|
|
Mat prev_cropped = prev(myROI); |
|
|
searchForMovement(prev_cropped, next_stab_cropped, output); |
|
|
searchForMovementOptFlow(prev_cropped, next_stab_cropped, output); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
@ -207,7 +219,6 @@ class Traite_image { |
|
|
threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); |
|
|
threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); |
|
|
flow_norm.convertTo(flow_norm, CV_8U); |
|
|
flow_norm.convertTo(flow_norm, CV_8U); |
|
|
|
|
|
|
|
|
bool objectDetected = false; |
|
|
|
|
|
Mat temp; |
|
|
Mat temp; |
|
|
flow_norm.copyTo(temp); |
|
|
flow_norm.copyTo(temp); |
|
|
//these two vectors needed for output of findContours
|
|
|
//these two vectors needed for output of findContours
|
|
|
@ -217,11 +228,7 @@ class Traite_image { |
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
|
|
|
|
|
//if contours vector is not empty, we have found some objects
|
|
|
if(contours.size()>0){ //if contours vector is not empty, we have found some objects
|
|
|
if(contours.size()>0)objectDetected=true; |
|
|
|
|
|
else objectDetected = false; |
|
|
|
|
|
|
|
|
|
|
|
if(objectDetected){ |
|
|
|
|
|
//the largest contour is found at the end of the contours vector
|
|
|
//the largest contour is found at the end of the contours vector
|
|
|
//we will simply assume that the biggest contour is the object we are looking for.
|
|
|
//we will simply assume that the biggest contour is the object we are looking for.
|
|
|
vector< vector<Point> > largestContourVec; |
|
|
vector< vector<Point> > largestContourVec; |
|
|
@ -273,8 +280,9 @@ class Traite_image { |
|
|
|
|
|
|
|
|
int main(int argc, char **argv) |
|
|
int main(int argc, char **argv) |
|
|
{ |
|
|
{ |
|
|
ros::init(argc, argv, "test_opencv"); |
|
|
ros::init(argc, argv, "Papillon"); |
|
|
Traite_image dataset=Traite_image(); |
|
|
bool sim = false; |
|
|
|
|
|
Traite_image dataset=Traite_image(sim); |
|
|
ros::spin(); |
|
|
ros::spin(); |
|
|
|
|
|
|
|
|
return 0; |
|
|
return 0; |
|
|
|