|
|
|
@ -2,6 +2,7 @@ |
|
|
|
#include <image_transport/image_transport.h> |
|
|
|
#include <cv_bridge/cv_bridge.h> |
|
|
|
#include <sensor_msgs/image_encodings.h> |
|
|
|
#include <geometry_msgs/Twist.h> |
|
|
|
|
|
|
|
#include <opencv/cv.h> |
|
|
|
|
|
|
|
@ -14,9 +15,8 @@ class Traite_image { |
|
|
|
public: |
|
|
|
const static int SENSITIVITY_VALUE = 30; |
|
|
|
const static int BLUR_SIZE = 10; |
|
|
|
const int HORIZONTAL_BORDER_CROP = 20; // In pixels. Crops the border to reduce the black borders from stabilisation being too noticeable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat prev; |
|
|
|
Mat last_T; |
|
|
|
bool first = true; |
|
|
|
@ -28,12 +28,14 @@ class Traite_image { |
|
|
|
ros::NodeHandle n; |
|
|
|
|
|
|
|
image_transport::ImageTransport it; |
|
|
|
image_transport::Publisher pub; |
|
|
|
image_transport::Publisher pub_img; |
|
|
|
ros::Publisher pub_cmd; |
|
|
|
image_transport::Subscriber sub; |
|
|
|
|
|
|
|
|
|
|
|
Traite_image() : n("~"),it(n) { |
|
|
|
pub = it.advertise("/image_out", 1); |
|
|
|
pub_img = it.advertise("/image_out", 1); |
|
|
|
pub_cmd = n.advertise<geometry_msgs::Twist>("/vrep/drone/cmd_vel", 1); |
|
|
|
sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed")); |
|
|
|
} |
|
|
|
|
|
|
|
@ -71,8 +73,10 @@ class Traite_image { |
|
|
|
searchForMovement(prev_cropped, next_stab_cropped, output); |
|
|
|
|
|
|
|
|
|
|
|
pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
|
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
|
// bridge_input is handled by a smart-pointer. No explicit delete needed.
|
|
|
|
|
|
|
|
droneTracking(Rect(Point(0,0), output.size())); |
|
|
|
|
|
|
|
//ROS_INFO("pub");
|
|
|
|
|
|
|
|
@ -182,113 +186,25 @@ class Traite_image { |
|
|
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; |
|
|
|
} |
|
|
|
|
|
|
|
Vec3b computeColor(float fx, float fy) |
|
|
|
{ |
|
|
|
static bool first = true; |
|
|
|
|
|
|
|
// relative lengths of color transitions:
|
|
|
|
// these are chosen based on perceptual similarity
|
|
|
|
// (e.g. one can distinguish more shades between red and yellow
|
|
|
|
// than between yellow and green)
|
|
|
|
const int RY = 15; |
|
|
|
const int YG = 6; |
|
|
|
const int GC = 4; |
|
|
|
const int CB = 11; |
|
|
|
const int BM = 13; |
|
|
|
const int MR = 6; |
|
|
|
const int NCOLS = RY + YG + GC + CB + BM + MR; |
|
|
|
static Vec3i colorWheel[NCOLS]; |
|
|
|
|
|
|
|
if (first) |
|
|
|
{ |
|
|
|
int k = 0; |
|
|
|
|
|
|
|
for (int i = 0; i < RY; ++i, ++k) |
|
|
|
colorWheel[k] = Vec3i(255, 255 * i / RY, 0); |
|
|
|
|
|
|
|
for (int i = 0; i < YG; ++i, ++k) |
|
|
|
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0); |
|
|
|
|
|
|
|
for (int i = 0; i < GC; ++i, ++k) |
|
|
|
colorWheel[k] = Vec3i(0, 255, 255 * i / GC); |
|
|
|
|
|
|
|
for (int i = 0; i < CB; ++i, ++k) |
|
|
|
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255); |
|
|
|
|
|
|
|
for (int i = 0; i < BM; ++i, ++k) |
|
|
|
colorWheel[k] = Vec3i(255 * i / BM, 0, 255); |
|
|
|
|
|
|
|
for (int i = 0; i < MR; ++i, ++k) |
|
|
|
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR); |
|
|
|
|
|
|
|
first = false; |
|
|
|
} |
|
|
|
|
|
|
|
const float rad = sqrt(fx * fx + fy * fy); |
|
|
|
const float a = atan2(-fy, -fx) / (float)CV_PI; |
|
|
|
|
|
|
|
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1); |
|
|
|
const int k0 = static_cast<int>(fk); |
|
|
|
const int k1 = (k0 + 1) % NCOLS; |
|
|
|
const float f = fk - k0; |
|
|
|
|
|
|
|
Vec3b pix; |
|
|
|
|
|
|
|
for (int b = 0; b < 3; b++) |
|
|
|
{ |
|
|
|
const float col0 = colorWheel[k0][b] / 255.f; |
|
|
|
const float col1 = colorWheel[k1][b] / 255.f; |
|
|
|
|
|
|
|
float col = (1 - f) * col0 + f * col1; |
|
|
|
|
|
|
|
if (rad <= 1) |
|
|
|
col = 1 - rad * (1 - col); // increase saturation with radius
|
|
|
|
else |
|
|
|
col *= .75; // out of range
|
|
|
|
|
|
|
|
pix[2 - b] = static_cast<uchar>(255.f * col); |
|
|
|
} |
|
|
|
|
|
|
|
return pix; |
|
|
|
} |
|
|
|
|
|
|
|
void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1) |
|
|
|
{ |
|
|
|
dst.create(flow.size(), CV_8UC3); |
|
|
|
dst.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
// determine motion range:
|
|
|
|
float maxrad = maxmotion; |
|
|
|
|
|
|
|
if (maxmotion <= 0) |
|
|
|
{ |
|
|
|
maxrad = 1; |
|
|
|
for (int y = 0; y < flow.rows; ++y) |
|
|
|
{ |
|
|
|
for (int x = 0; x < flow.cols; ++x) |
|
|
|
{ |
|
|
|
Point2f u = flow(y, x); |
|
|
|
|
|
|
|
if (!isFlowCorrect(u)) |
|
|
|
continue; |
|
|
|
|
|
|
|
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
for (int y = 0; y < flow.rows; ++y) |
|
|
|
{ |
|
|
|
for (int x = 0; x < flow.cols; ++x) |
|
|
|
{ |
|
|
|
Point2f u = flow(y, x); |
|
|
|
|
|
|
|
if (isFlowCorrect(u)) |
|
|
|
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void droneTracking(Rect img_size) |
|
|
|
{ |
|
|
|
Point2f centre_image = Point2f(img_size.width/2, img_size.height/2); |
|
|
|
Point2f centre_rect = Point2f(objectBoundingRectangle.x + objectBoundingRectangle.width/2, objectBoundingRectangle.y + objectBoundingRectangle.height/2); |
|
|
|
|
|
|
|
geometry_msgs::Twist twist = geometry_msgs::Twist(); |
|
|
|
|
|
|
|
if(centre_rect.x < centre_image.x) |
|
|
|
{ |
|
|
|
twist.angular.z = 0.2; |
|
|
|
} |
|
|
|
else if(centre_rect.x > centre_image.x) |
|
|
|
{ |
|
|
|
twist.angular.z = -0.2; |
|
|
|
} |
|
|
|
|
|
|
|
pub_cmd.publish(twist); |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|