2 changed files with 74 additions and 53 deletions
@ -0,0 +1,74 @@ |
|||||
|
import numpy as np |
||||
|
import matplotlib.pyplot as plt |
||||
|
import PyQt5 as qt |
||||
|
|
||||
|
# Vn = 4e5 # En V |
||||
|
|
||||
|
def make_Y(n): |
||||
|
Y = np.zeros((n, n)) |
||||
|
return Y |
||||
|
|
||||
|
def connect_Y(x, y, Ys, Yp, Y): |
||||
|
Y[x, y] = -Ys |
||||
|
Y[y, x] = -Ys |
||||
|
Y[x, x] += Ys + Yp |
||||
|
Y[y, y] += Ys + Yp |
||||
|
|
||||
|
def spec(n, Y, Vn): |
||||
|
S = np.zeros((n, n)) |
||||
|
for i in range(n): |
||||
|
for k in range(n): |
||||
|
if i == k: |
||||
|
S[i, k] = n |
||||
|
else: |
||||
|
S[i, k] = -1 |
||||
|
S[i, k] *= Vn**2 * Y[i, k] |
||||
|
return S |
||||
|
|
||||
|
def delta_select(i, S): |
||||
|
S = np.delete(S, (i), axis=0) |
||||
|
S = np.delete(S, (i), axis=1) |
||||
|
return S |
||||
|
|
||||
|
def power_select(i, P): |
||||
|
P = np.array(P[:i].tolist() + P[i+1:].tolist()) |
||||
|
return P |
||||
|
|
||||
|
def complete_data(P, delta, i): |
||||
|
ndelta = np.array(delta[:i].tolist() + [0] + delta[i:].tolist()) |
||||
|
nP = np.array(P[:i].tolist() + [-np.sum(P)] + P[i:].tolist()) |
||||
|
return ndelta, nP |
||||
|
|
||||
|
# Vecteur des puissances |
||||
|
P = np.array([1000, -500, -250, -250]) |
||||
|
P = P * 1e6 # Passage en MW |
||||
|
|
||||
|
# Création de la matrice d'admitances (dimension n) |
||||
|
Y = make_Y(4) |
||||
|
connect_Y(2, 3, 0.1, 0, Y) |
||||
|
connect_Y(1, 3, 0.15, 0, Y) |
||||
|
connect_Y(2, 1, 0.05, 0, Y) |
||||
|
connect_Y(2, 0, 0.05, 0, Y) |
||||
|
connect_Y(3, 0, 0.05, 0, Y) |
||||
|
print("Admittance matrix :", Y) |
||||
|
|
||||
|
# Mise en place du système linéaire à résoudre |
||||
|
S = spec(4, Y, 2e5) # dim n |
||||
|
S = delta_select(3, S) # dim n-1, sélection de l'angle de transport de référence (delta_3) |
||||
|
print("System matrix :", S) |
||||
|
|
||||
|
# Sélection des puissances (dimension n-1) |
||||
|
P = power_select(3, P) |
||||
|
print("Puissances de référence : ", P) |
||||
|
|
||||
|
# Résolution (dimension n-1) |
||||
|
invS = np.linalg.inv(S) |
||||
|
print("Inverse : ", invS) |
||||
|
|
||||
|
# Calcul des angles de transport (dimension n-1) |
||||
|
delta = np.dot(invS, P) |
||||
|
|
||||
|
# Ajout de l'angle de transport d'origine et de la puissance associée (on repasse en dim n) |
||||
|
ndelta, nP = complete_data(P, delta, 3) |
||||
|
print("Power input :", nP) |
||||
|
print("Delta (rad) :", ndelta * 180 / 3.1415) |
||||
@ -1,53 +0,0 @@ |
|||||
import numpy as np |
|
||||
import matplotlib.pyplot as plt |
|
||||
import PyQt5 as qt |
|
||||
|
|
||||
# Vn = 4e5 # En V |
|
||||
|
|
||||
def make_Y(n): |
|
||||
Y = np.zeros((n, n)) |
|
||||
return Y |
|
||||
|
|
||||
def connect_Y(x, y, Ys, Yp, Y): |
|
||||
Y[x, y] = -Ys |
|
||||
Y[y, x] = -Ys |
|
||||
Y[x, x] += Ys + Yp |
|
||||
Y[y, y] += Ys + Yp |
|
||||
|
|
||||
def spec(n, Y, Vn): |
|
||||
S = np.zeros((n, n)) |
|
||||
for i in range(n): |
|
||||
for k in range(n): |
|
||||
if i == k: |
|
||||
S[i, k] = n |
|
||||
else: |
|
||||
S[i, k] = -1 |
|
||||
S[i, k] *= Vn**2 * Y[i, k] |
|
||||
return S |
|
||||
|
|
||||
def delta_select(i, S): |
|
||||
for k in range(len(S)): |
|
||||
S[i, k] = 0 |
|
||||
|
|
||||
|
|
||||
Y = make_Y(4) |
|
||||
connect_Y(2, 3, 0.1, 0, Y) |
|
||||
connect_Y(1, 3, 0.15, 0, Y) |
|
||||
connect_Y(2, 1, 0.05, 0, Y) |
|
||||
connect_Y(2, 0, 0.05, 0, Y) |
|
||||
connect_Y(3, 0, 0.05, 0, Y) |
|
||||
print("Admittance matrix :") |
|
||||
print(Y) |
|
||||
S = spec(4, Y, 2e5) |
|
||||
print("System matrix :") |
|
||||
print(S) |
|
||||
invS = np.linalg.inv(S) |
|
||||
print(invS) |
|
||||
P = np.array([1000, -500, -250, -250]) |
|
||||
P = P * 1e6 |
|
||||
print("Power input :") |
|
||||
print(P) |
|
||||
delta = np.dot(invS, P) |
|
||||
print("Delta (rad) :") |
|
||||
print(delta) |
|
||||
print(delta * 180 / 3.1415) |
|
||||
Loading…
Reference in new issue