En notant $\mathcal{V}=\{P_i\}_{1\leq i\leq n}$ un nuage de $n \in\N$ points dans le plan représentants des villes, on définit pour tout $ A,B \in\mathcal{V}, d(A,B)$ la distance à vol d'oiseau entre les deux villes. On décide de placer une arête entre deux points $A$ et $B$ du plan si et seulement si,
\begin{equation}
\forall C \in\mathcal{V}, \forall M \in [A,B], d(M,V) \geq\min\{d(M,A), d(M,B)\}\label{eq:condArete}
\end{equation}
Montrons que la condition \ref{eq:condArete} est équivalente à ce que pour toute paire de sommets $(A,B)$ du nuage, $\{A,B\}$ forme une arête si et seulement si il n'existe pas de points $C \in\mathcal{V}$ dans le cercle de diamètre $[A,B]$. Un graphe vérifiant cette condition sera par la suite appelé \emph{graphe de Gabriel}.
\paragraph{preuve :}{
Soient $A,B \in\mathcal{V}$ et on appelle $\mathcal{C}$ le cercle de diamètre $[A,B]$. La figure \ref{fig:positionsC} montre différentes positions possibles de points.
Supposons qu'il existe une arête reliant les deux points. Si il existe des points du nuage dans le disque ouvert délimité par $\mathcal{C}$, alors il existe un point $M$ qui ne vérifie pas la condition \ref{eq:condArete}, \emph{absurde}.
Réciproquement, si tous les points de $\mathcal{V}$ sont à l'extérieur du cercle ouvert délimité par $\mathcal{C}$, (dans l'exemple $C'$ et $C''$), alors pour tout $P\in\mathcal{V}\ \{A,B\}$, le point $M\in[A,B]$ le plus proche de $P$ vérifie la condition \ref{eq:condArete} (dans l'exemple, les points $M'$ et $M''$).$\square$