6 changed files with 97 additions and 0 deletions
@ -0,0 +1,78 @@ |
|||
#! /usr/bin/python |
|||
|
|||
import numpy as np |
|||
from scipy.ndimage import label, find_objects, center_of_mass |
|||
|
|||
|
|||
def find_targets(picture, threshold_blue=140, threshold_red=120, threshold_green=190, return_slices=False): |
|||
"""Find three blue targets in the given picture (RGB matrix). |
|||
|
|||
Args: |
|||
picture: a 2D matrix of RGB values |
|||
threshold_blue: minimal value of the blue channel for a point to be |
|||
considered as blue. |
|||
threshold_red: maximal value of the red channel allowed for a |
|||
target |
|||
threshold_green: maximal value of the green channel allowed for a |
|||
target |
|||
return_slices: Boolean stating if the slices locating the targets |
|||
should be returned. |
|||
|
|||
Returns: |
|||
(H,L,R,[objects]) the positions of the targets in the picture (center of mass). objects is the list of slices controlled by the return_slices parameter. |
|||
|
|||
Raises: |
|||
ValueError when less than three targets are found. |
|||
""" |
|||
|
|||
blue_points = np.where( |
|||
(picture[:, :, 2] > threshold_blue) |
|||
& (picture[:, :, 0] < threshold_red) |
|||
& (picture[:, :, 1] < threshold_green), |
|||
1, |
|||
0 |
|||
) |
|||
|
|||
structure = [ |
|||
[0, 1, 0], |
|||
[1, 1, 1], |
|||
[0, 1, 0] |
|||
] |
|||
labels, n = label(blue_points, structure) |
|||
|
|||
if n < 3: |
|||
raise ValueError("Less than three potential targets were found") |
|||
|
|||
objects = [(a[0], a[1], i+1) for i, a in enumerate(find_objects(labels))] |
|||
|
|||
objects = sorted( |
|||
objects, |
|||
key=lambda x: (x[0].stop - x[0].start) * (x[1].stop - x[1].start) |
|||
)[-3:] |
|||
|
|||
coordinates = center_of_mass( |
|||
blue_points, |
|||
labels, |
|||
index=[o[2] for o in objects] |
|||
) |
|||
|
|||
# Highest point |
|||
high = sorted( |
|||
coordinates, |
|||
key=lambda x: x[1] |
|||
) |
|||
H = high[0] |
|||
|
|||
sides = sorted( |
|||
high[1:], |
|||
key=lambda x: x[0] |
|||
) |
|||
# Leftmost point |
|||
L = sides[0] |
|||
# Rightmost point |
|||
R = sides[-1] |
|||
|
|||
if return_slices: |
|||
return H, L, R, [(o[0], o[1]) for o in objects] |
|||
else: |
|||
return H, L, R |
|||
|
After Width: | Height: | Size: 113 KiB |
|
After Width: | Height: | Size: 104 KiB |
|
After Width: | Height: | Size: 797 KiB |
|
After Width: | Height: | Size: 650 KiB |
@ -0,0 +1,19 @@ |
|||
import matplotlib.pyplot as pl |
|||
from matplotlib.patches import Rectangle |
|||
|
|||
from find_targets import find_targets |
|||
|
|||
fig, ax = pl.subplots(1) |
|||
img = pl.imread('image.jpeg') |
|||
|
|||
|
|||
H, L, R, objects = find_targets(img, return_slices=True) |
|||
|
|||
for o in objects: |
|||
x, y = o |
|||
r = Rectangle((y.start, x.start), y.stop-y.start, x.stop-x.start, linewidth=1,edgecolor='r',facecolor='none') |
|||
ax.add_patch(r) |
|||
ax.imshow(img) |
|||
ax.plot([H[1], L[1], R[1]], [H[0], L[0], R[0]], 'o', color='red') |
|||
|
|||
pl.show() |
|||
Loading…
Reference in new issue