|
|
|
@ -8,22 +8,21 @@ |
|
|
|
|
|
|
|
#include <sstream> |
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
using namespace std; |
|
|
|
|
|
|
|
class Traite_image { |
|
|
|
public: |
|
|
|
const static int SENSITIVITY_VALUE = 40; |
|
|
|
const static int BLUR_SIZE = 15; |
|
|
|
const static int BLUR_Size = 15; |
|
|
|
|
|
|
|
|
|
|
|
Mat prev; |
|
|
|
Mat last_T; |
|
|
|
cv::Mat prev; |
|
|
|
cv::Mat last_T; |
|
|
|
bool first = true; |
|
|
|
int resize_f = 2; |
|
|
|
|
|
|
|
int theObject[2] = {0,0}; |
|
|
|
Rect objectBoundingRectangle = Rect(0,0,0,0); |
|
|
|
cv::Rect objectBoundingRectangle = cv::Rect(0,0,0,0); |
|
|
|
|
|
|
|
ros::NodeHandle n; |
|
|
|
|
|
|
|
@ -47,17 +46,17 @@ class Traite_image { |
|
|
|
try { |
|
|
|
bridge_input = cv_bridge::toCvShare(msg,sensor_msgs::image_encodings::RGB8); |
|
|
|
} |
|
|
|
catch (Exception& e) { |
|
|
|
catch (cv::Exception& e) { |
|
|
|
std::ostringstream errstr; |
|
|
|
errstr << "cv_bridge exception caught: " << e.what(); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
//Mat& input = const_cast<Mat&>(bridge_input->image);
|
|
|
|
const Mat& input = bridge_input->image; |
|
|
|
Mat next; |
|
|
|
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
|
Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
|
//cv::Mat& input = const_cast<cv::Mat&>(bridge_input->image);
|
|
|
|
const cv::Mat& input = bridge_input->image; |
|
|
|
cv::Mat next; |
|
|
|
resize(input, next, cv::Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
|
cv::Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
|
//ROS_INFO("got input");
|
|
|
|
if (first) { |
|
|
|
prev = next.clone(); |
|
|
|
@ -65,16 +64,16 @@ class Traite_image { |
|
|
|
ROS_INFO("first done"); |
|
|
|
} |
|
|
|
|
|
|
|
Mat next_stab; |
|
|
|
cv::Mat next_stab; |
|
|
|
stabiliseImg(prev, next, next_stab); |
|
|
|
int crop_ratio = 6; |
|
|
|
float crop_x = next_stab.size().width/crop_ratio; |
|
|
|
float crop_y = next_stab.size().height/crop_ratio; |
|
|
|
float crop_w = next_stab.size().width*(1-2.0/crop_ratio); |
|
|
|
float crop_h = next_stab.size().height*(1-2.0/crop_ratio); |
|
|
|
Rect myROI(crop_x, crop_y, crop_w, crop_h); |
|
|
|
Mat next_stab_cropped = next_stab(myROI); |
|
|
|
Mat prev_cropped = prev(myROI); |
|
|
|
cv::Rect myROI(crop_x, crop_y, crop_w, crop_h); |
|
|
|
cv::Mat next_stab_cropped = next_stab(myROI); |
|
|
|
cv::Mat prev_cropped = prev(myROI); |
|
|
|
searchForMovement(prev_cropped, next_stab_cropped, output); |
|
|
|
|
|
|
|
|
|
|
|
@ -97,21 +96,21 @@ class Traite_image { |
|
|
|
return ss.str(); |
|
|
|
} |
|
|
|
|
|
|
|
void stabiliseImg(Mat prev, Mat cur, Mat &output){ |
|
|
|
Mat cur_grey, prev_grey; |
|
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
|
void stabiliseImg(cv::Mat prev, cv::Mat cur, cv::Mat &output){ |
|
|
|
cv::Mat cur_grey, prev_grey; |
|
|
|
cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY); |
|
|
|
cv::cvtColor(prev, prev_grey, cv::COLOR_BGR2GRAY); |
|
|
|
|
|
|
|
// vector from prev to cur
|
|
|
|
vector <Point2f> prev_corner, cur_corner; |
|
|
|
vector <Point2f> prev_corner2, cur_corner2; |
|
|
|
vector <cv::Point2f> prev_corner, cur_corner; |
|
|
|
vector <cv::Point2f> prev_corner2, cur_corner2; |
|
|
|
vector <uchar> status; |
|
|
|
vector <float> err; |
|
|
|
|
|
|
|
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30); |
|
|
|
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); |
|
|
|
cv::goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30); |
|
|
|
cv::calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); |
|
|
|
|
|
|
|
// weed out bad matches
|
|
|
|
// weed out bad cv::Matches
|
|
|
|
for(size_t i=0; i < status.size(); i++) { |
|
|
|
if(status[i]) { |
|
|
|
prev_corner2.push_back(prev_corner[i]); |
|
|
|
@ -119,51 +118,51 @@ class Traite_image { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing
|
|
|
|
cv::Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing
|
|
|
|
|
|
|
|
if(T.data == NULL) { |
|
|
|
last_T.copyTo(T); |
|
|
|
} |
|
|
|
T.copyTo(last_T); |
|
|
|
|
|
|
|
Mat cur2; |
|
|
|
cv::Mat cur2; |
|
|
|
|
|
|
|
warpAffine(cur, cur2, T, cur.size(),INTER_CUBIC|WARP_INVERSE_MAP); |
|
|
|
cv::warpAffine(cur, cur2, T, cur.size(),cv::INTER_CUBIC|cv::WARP_INVERSE_MAP); |
|
|
|
|
|
|
|
cur2.copyTo(output); |
|
|
|
} |
|
|
|
|
|
|
|
void searchForMovement(Mat prev, Mat cur, Mat &output){ |
|
|
|
Mat cur_grey, prev_grey; |
|
|
|
void searchForMovement(cv::Mat prev, cv::Mat cur, cv::Mat &output){ |
|
|
|
cv::Mat cur_grey, prev_grey; |
|
|
|
cur.copyTo(output); |
|
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
|
GaussianBlur(prev_grey, prev_grey, Size(BLUR_SIZE,BLUR_SIZE), 3.0); |
|
|
|
GaussianBlur(cur_grey, cur_grey, Size(BLUR_SIZE,BLUR_SIZE), 3.0); |
|
|
|
//blur(prev_grey, prev_grey, Size(BLUR_SIZE, BLUR_SIZE));
|
|
|
|
//blur(cur_grey, cur_grey, Size(BLUR_SIZE, BLUR_SIZE));
|
|
|
|
cv::cvtColor(prev, prev_grey, cv::COLOR_BGR2GRAY); |
|
|
|
cv::cvtColor(cur, cur_grey, cv::COLOR_BGR2GRAY); |
|
|
|
cv::GaussianBlur(prev_grey, prev_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0); |
|
|
|
cv::GaussianBlur(cur_grey, cur_grey, cv::Size(BLUR_Size,BLUR_Size), 3.0); |
|
|
|
//blur(prev_grey, prev_grey, cv::Size(BLUR_Size, BLUR_Size));
|
|
|
|
//blur(cur_grey, cur_grey, cv::Size(BLUR_Size, BLUR_Size));
|
|
|
|
|
|
|
|
// Subtract the 2 last frames and threshold them
|
|
|
|
Mat thres; |
|
|
|
absdiff(prev_grey,cur_grey,thres); |
|
|
|
cv::Mat thres; |
|
|
|
cv::absdiff(prev_grey,cur_grey,thres); |
|
|
|
// threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
|
|
|
// // Blur to eliminate noise
|
|
|
|
// blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
|
|
|
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY); |
|
|
|
// blur(thres, thres, cv::Size(BLUR_Size, BLUR_Size));
|
|
|
|
cv::threshold(thres, thres, SENSITIVITY_VALUE, 255, cv::THRESH_BINARY); |
|
|
|
|
|
|
|
//~ int dilation_size = 2;
|
|
|
|
//~ Mat element = getStructuringElement( MORPH_ELLIPSE,
|
|
|
|
//~ Size( 2*dilation_size + 1, 2*dilation_size+1 ),
|
|
|
|
//~ Point( dilation_size, dilation_size ) );
|
|
|
|
//~ int dilation_Size = 2;
|
|
|
|
//~ cv::Mat element = getStructuringElement( MORPH_ELLIPSE,
|
|
|
|
//~ cv::Size( 2*dilation_Size + 1, 2*dilation_Size+1 ),
|
|
|
|
//~ Point( dilation_Size, dilation_Size ) );
|
|
|
|
//~ // Apply the dilation operation
|
|
|
|
//~ Mat dilated_thres;
|
|
|
|
//~ cv::Mat dilated_thres;
|
|
|
|
//~ dilate(thres, dilated_thres, element );
|
|
|
|
//~
|
|
|
|
//~ dilated_thres.copyTo(output);
|
|
|
|
|
|
|
|
Mat closed_thres; |
|
|
|
Mat structuringElement = getStructuringElement(MORPH_ELLIPSE, Size(40, 40)); |
|
|
|
morphologyEx( thres, closed_thres, MORPH_CLOSE, structuringElement ); |
|
|
|
cv::Mat closed_thres; |
|
|
|
cv::Mat structuringElement = getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(40, 40)); |
|
|
|
cv::morphologyEx( thres, closed_thres, cv::MORPH_CLOSE, structuringElement ); |
|
|
|
|
|
|
|
//closed_thres.copyTo(output);
|
|
|
|
|
|
|
|
@ -171,14 +170,14 @@ class Traite_image { |
|
|
|
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
|
|
|
//eg. we draw to the output to be displayed in the main() function.
|
|
|
|
bool objectDetected = false; |
|
|
|
Mat temp; |
|
|
|
cv::Mat temp; |
|
|
|
closed_thres.copyTo(temp); |
|
|
|
//these two vectors needed for output of findContours
|
|
|
|
vector< vector<Point> > contours; |
|
|
|
vector<Vec4i> hierarchy; |
|
|
|
vector< vector<cv::Point> > contours; |
|
|
|
vector<cv::Vec4i> hierarchy; |
|
|
|
//find contours of filtered image using openCV findContours function
|
|
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
cv::findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
|
|
|
|
//if contours vector is not empty, we have found some objects
|
|
|
|
if(contours.size()>0)objectDetected=true; |
|
|
|
@ -190,11 +189,11 @@ class Traite_image { |
|
|
|
//vector< vector<Point> > largestContourVec;
|
|
|
|
//largestContourVec.push_back(contours.at(contours.size()-1));
|
|
|
|
//make a bounding rectangle around the largest contour then find its centroid
|
|
|
|
//this will be the object's final estimated position.
|
|
|
|
//this will be the object's final esticv::Mated position.
|
|
|
|
for(int i=0; i<contours.size();i++) |
|
|
|
{ |
|
|
|
objectBoundingRectangle = boundingRect(contours[i]); |
|
|
|
rectangle(output, objectBoundingRectangle, Scalar(0, 255, 0), 2); |
|
|
|
objectBoundingRectangle = cv::boundingRect(contours[i]); |
|
|
|
cv::rectangle(output, objectBoundingRectangle, cv::Scalar(0, 255, 0), 2); |
|
|
|
} |
|
|
|
} |
|
|
|
//make some temp x and y variables so we dont have to type out so much
|
|
|
|
@ -204,36 +203,16 @@ class Traite_image { |
|
|
|
//~ int height = objectBoundingRectangle.height;
|
|
|
|
|
|
|
|
//draw a rectangle around the object
|
|
|
|
//rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2);
|
|
|
|
//rectangle(output, Point(x,y), Point(x+width, y+height), cv::Scalar(0, 255, 0), 2);
|
|
|
|
|
|
|
|
//write the position of the object to the screen
|
|
|
|
//putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
|
|
|
//putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,cv::Scalar(255,0,0),2);
|
|
|
|
} |
|
|
|
|
|
|
|
inline bool isFlowCorrect(Point2f u) |
|
|
|
inline bool isFlowCorrect(cv::Point2f u) |
|
|
|
{ |
|
|
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void droneTracking(Rect img_size) |
|
|
|
{ |
|
|
|
Point2f centre_image = Point2f(img_size.width/2, img_size.height/2); |
|
|
|
Point2f centre_rect = Point2f(objectBoundingRectangle.x + objectBoundingRectangle.width/2, objectBoundingRectangle.y + objectBoundingRectangle.height/2); |
|
|
|
|
|
|
|
geometry_msgs::Twist twist = geometry_msgs::Twist(); |
|
|
|
|
|
|
|
if(centre_rect.x < centre_image.x) |
|
|
|
{ |
|
|
|
twist.angular.z = 0.2; |
|
|
|
} |
|
|
|
else if(centre_rect.x > centre_image.x) |
|
|
|
{ |
|
|
|
twist.angular.z = -0.2; |
|
|
|
} |
|
|
|
|
|
|
|
pub_cmd.publish(twist); |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|