|
|
@ -14,6 +14,8 @@ class Traite_image { |
|
|
public: |
|
|
public: |
|
|
const static int SENSITIVITY_VALUE = 30; |
|
|
const static int SENSITIVITY_VALUE = 30; |
|
|
const static int BLUR_SIZE = 10; |
|
|
const static int BLUR_SIZE = 10; |
|
|
|
|
|
const int HORIZONTAL_BORDER_CROP = 20; // In pixels. Crops the border to reduce the black borders from stabilisation being too noticeable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat prev; |
|
|
Mat prev; |
|
|
Mat last_T; |
|
|
Mat last_T; |
|
|
@ -52,9 +54,7 @@ class Traite_image { |
|
|
//Mat& input = const_cast<Mat&>(bridge_input->image);
|
|
|
//Mat& input = const_cast<Mat&>(bridge_input->image);
|
|
|
const Mat& input = bridge_input->image; |
|
|
const Mat& input = bridge_input->image; |
|
|
Mat next; |
|
|
Mat next; |
|
|
Mat next_grey; |
|
|
|
|
|
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f)); |
|
|
cvtColor(next, next_grey, CV_BGR2GRAY); |
|
|
|
|
|
Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
Mat output;// = input.clone(); // (input.rows, input.cols, CV_32FC2);
|
|
|
//ROS_INFO("got input");
|
|
|
//ROS_INFO("got input");
|
|
|
if (first) { |
|
|
if (first) { |
|
|
@ -95,8 +95,8 @@ class Traite_image { |
|
|
Mat prev_grey, cur_grey; |
|
|
Mat prev_grey, cur_grey; |
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
Point2f srcTri[3]; |
|
|
//Point2f srcTri[3];
|
|
|
Point2f dstTri[3]; |
|
|
//Point2f dstTri[3];
|
|
|
Mat warp_mat( 2, 3, CV_32FC1 ); |
|
|
Mat warp_mat( 2, 3, CV_32FC1 ); |
|
|
|
|
|
|
|
|
// vector from prev to cur
|
|
|
// vector from prev to cur
|
|
|
@ -117,9 +117,19 @@ class Traite_image { |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// translation + rotation only
|
|
|
// translation + rotation only
|
|
|
Mat T(2, 3, CV_32FC1); |
|
|
// Mat T(2, 3, CV_32FC1);
|
|
|
T = estimateRigidTransform(prev_corner2, cur_corner2, false); // false = rigid transform, no scaling/shearing
|
|
|
Mat T = estimateRigidTransform(prev_corner2, cur_corner2, false); // false = rigid transform, no scaling/shearing
|
|
|
|
|
|
|
|
|
|
|
|
ROS_INFO("coucou1"); |
|
|
|
|
|
// in rare cases no transform is found. We'll just use the last known good transform.
|
|
|
|
|
|
/*if(T.data == NULL) {
|
|
|
|
|
|
last_T = T.clone(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
T = last_T.clone();*/ |
|
|
|
|
|
ROS_INFO("coucou2"); |
|
|
|
|
|
|
|
|
|
|
|
// decompose T
|
|
|
double dx = T.at<double>(0,2); |
|
|
double dx = T.at<double>(0,2); |
|
|
double dy = T.at<double>(1,2); |
|
|
double dy = T.at<double>(1,2); |
|
|
double da = atan2(T.at<double>(1,0), T.at<double>(0,0)); |
|
|
double da = atan2(T.at<double>(1,0), T.at<double>(0,0)); |
|
|
@ -136,19 +146,30 @@ class Traite_image { |
|
|
// H.at<double>(2,1) = 0.0;
|
|
|
// H.at<double>(2,1) = 0.0;
|
|
|
// H.at<double>(2,2) = 1.0;
|
|
|
// H.at<double>(2,2) = 1.0;
|
|
|
|
|
|
|
|
|
T.at<double>(0,0) = cos(da); |
|
|
Mat T1(2, 3, CV_32FC1); |
|
|
T.at<double>(0,1) = -sin(da); |
|
|
T1.at<double>(0,0) = cos(da); |
|
|
T.at<double>(1,0) = sin(da); |
|
|
T1.at<double>(0,1) = -sin(da); |
|
|
T.at<double>(1,1) = cos(da); |
|
|
T1.at<double>(1,0) = sin(da); |
|
|
|
|
|
T1.at<double>(1,1) = cos(da); |
|
|
|
|
|
|
|
|
T.at<double>(0,2) = dx; |
|
|
T1.at<double>(0,2) = dx; |
|
|
T.at<double>(1,2) = dy; |
|
|
T1.at<double>(1,2) = dy; |
|
|
|
|
|
|
|
|
// in rare cases no transform is found. We'll just use the last known good transform.
|
|
|
Mat cur2; |
|
|
if(T.data == NULL) { |
|
|
|
|
|
last_T.copyTo(T); |
|
|
warpAffine(cur, cur2, T1, cur.size()); |
|
|
} |
|
|
|
|
|
T.copyTo(last_T); |
|
|
|
|
|
|
|
|
int vert_border = HORIZONTAL_BORDER_CROP * prev.rows / prev.cols; // get the aspect ratio correct
|
|
|
|
|
|
|
|
|
|
|
|
cur2 = cur2(Range(vert_border, cur2.rows-vert_border), Range(HORIZONTAL_BORDER_CROP, cur2.cols-HORIZONTAL_BORDER_CROP)); |
|
|
|
|
|
|
|
|
|
|
|
// Resize cur2 back to cur size, for better side by side comparison
|
|
|
|
|
|
resize(cur2, cur2, cur.size()); |
|
|
|
|
|
|
|
|
|
|
|
output = cur2.clone(); |
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
|
|
|
|
/// Set your 3 points to calculate the Affine Transform
|
|
|
/// Set your 3 points to calculate the Affine Transform
|
|
|
srcTri[0] = Point2f( 0,0 ); |
|
|
srcTri[0] = Point2f( 0,0 ); |
|
|
@ -166,6 +187,8 @@ class Traite_image { |
|
|
warpAffine(cur,cur,warp_mat,cv::Size(prev.cols+cur.cols,prev.rows+cur.rows)); |
|
|
warpAffine(cur,cur,warp_mat,cv::Size(prev.cols+cur.cols,prev.rows+cur.rows)); |
|
|
//Mat half(output, cv::Rect(0, 0,cur.cols,cur.rows));
|
|
|
//Mat half(output, cv::Rect(0, 0,cur.cols,cur.rows));
|
|
|
cur.copyTo(output, cur); |
|
|
cur.copyTo(output, cur); |
|
|
|
|
|
* |
|
|
|
|
|
*/ |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void searchForMovement(Mat thresholdImage, Mat &cameraFeed){ |
|
|
void searchForMovement(Mat thresholdImage, Mat &cameraFeed){ |
|
|
|