|
|
|
@ -17,11 +17,17 @@ class Traite_image { |
|
|
|
const static int THRESHOLD_DETECT_SENSITIVITY = 10; |
|
|
|
const static int BLUR_SIZE = 5; |
|
|
|
const static int THRESHOLD_MOV = 5; |
|
|
|
const static int MOVEMENT_THRES = 0.1; |
|
|
|
|
|
|
|
|
|
|
|
Mat prev; |
|
|
|
Mat last_T; |
|
|
|
bool first = true; |
|
|
|
|
|
|
|
// Features vectors
|
|
|
|
vector <Point2f> prev_ftr, cur_ftr; |
|
|
|
|
|
|
|
// Downsize factor
|
|
|
|
int resize_f = 2; |
|
|
|
|
|
|
|
int theObject[2] = {0,0}; |
|
|
|
@ -72,7 +78,8 @@ class Traite_image { |
|
|
|
Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4); |
|
|
|
Mat next_stab_cropped = next_stab(myROI); |
|
|
|
Mat prev_cropped = prev(myROI); |
|
|
|
searchForMovementOptFlow(prev_cropped, next_stab_cropped, output); |
|
|
|
trackingOptFlow(prev_cropped, next_stab_cropped, output); |
|
|
|
//searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
|
|
|
|
|
|
|
|
|
|
|
|
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); |
|
|
|
@ -109,14 +116,16 @@ class Traite_image { |
|
|
|
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); |
|
|
|
|
|
|
|
// weed out bad matches
|
|
|
|
prev_ftr.clear(); |
|
|
|
cur_ftr.clear(); |
|
|
|
for(size_t i=0; i < status.size(); i++) { |
|
|
|
if(status[i]) { |
|
|
|
prev_corner2.push_back(prev_corner[i]); |
|
|
|
cur_corner2.push_back(cur_corner[i]); |
|
|
|
prev_ftr.push_back(prev_corner[i]); |
|
|
|
cur_ftr.push_back(cur_corner[i]); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing
|
|
|
|
Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
|
|
|
|
|
|
|
if(T.data == NULL) { |
|
|
|
last_T.copyTo(T); |
|
|
|
@ -239,59 +248,40 @@ class Traite_image { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void trackingOptFlow(Mat prev, Mat cur, Mat &output) { |
|
|
|
Mat cur_grey, prev_grey; |
|
|
|
cur.copyTo(output); |
|
|
|
cvtColor(prev, prev_grey, COLOR_BGR2GRAY); |
|
|
|
cvtColor(cur, cur_grey, COLOR_BGR2GRAY); |
|
|
|
void warpPoints(vector<Point2f> p, vector<Point2f> &p_warp, Mat T, bool invert=false) { |
|
|
|
if(invert) |
|
|
|
invertAffineTransform(T, T); |
|
|
|
|
|
|
|
Mat flow; |
|
|
|
calcOpticalFlowFarneback(prev_grey, cur_grey, flow, 0.5, 3, 15, 3, 5, 1.2, 0); |
|
|
|
vector<Mat> flow_coord(2); |
|
|
|
Mat flow_norm, angle; |
|
|
|
split(flow, flow_coord); |
|
|
|
cartToPolar(flow_coord[0], flow_coord[1], flow_norm, angle); |
|
|
|
p_warp.clear(); |
|
|
|
for(size_t i=0; i < p.size(); ++i) { |
|
|
|
Mat src(3/*rows*/,1 /* cols */,CV_64F); |
|
|
|
|
|
|
|
//threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
|
|
|
// Blur to eliminate noise
|
|
|
|
blur(flow_norm, flow_norm, Size(BLUR_SIZE, BLUR_SIZE)); |
|
|
|
threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); |
|
|
|
flow_norm.convertTo(flow_norm, CV_8U); |
|
|
|
src.at<double>(0,0)=p[i].x; |
|
|
|
src.at<double>(1,0)=p[i].y; |
|
|
|
src.at<double>(2,0)=1.0; |
|
|
|
|
|
|
|
bool objectDetected = false; |
|
|
|
Mat temp; |
|
|
|
flow_norm.copyTo(temp); |
|
|
|
//these two vectors needed for output of findContours
|
|
|
|
vector< vector<Point> > contours; |
|
|
|
vector<Vec4i> hierarchy; |
|
|
|
//find contours of filtered image using openCV findContours function
|
|
|
|
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
|
|
|
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
|
|
|
|
|
|
|
//if contours vector is not empty, we have found some objects
|
|
|
|
if(contours.size()>0)objectDetected=true; |
|
|
|
else objectDetected = false; |
|
|
|
|
|
|
|
if(objectDetected){ |
|
|
|
//the largest contour is found at the end of the contours vector
|
|
|
|
//we will simply assume that the biggest contour is the object we are looking for.
|
|
|
|
vector< vector<Point> > largestContourVec; |
|
|
|
largestContourVec.push_back(contours.at(contours.size()-1)); |
|
|
|
//make a bounding rectangle around the largest contour then find its centroid
|
|
|
|
//this will be the object's final estimated position.
|
|
|
|
objectBoundingRectangle = boundingRect(largestContourVec.at(0)); |
|
|
|
Mat dst = T*src; //USE MATRIX ALGEBRA
|
|
|
|
p_warp.push_back(Point2f(dst.at<double>(0,0),dst.at<double>(1,0))); |
|
|
|
} |
|
|
|
//make some temp x and y variables so we dont have to type out so much
|
|
|
|
int x = objectBoundingRectangle.x; |
|
|
|
int y = objectBoundingRectangle.y; |
|
|
|
int width = objectBoundingRectangle.width; |
|
|
|
int height = objectBoundingRectangle.height; |
|
|
|
} |
|
|
|
|
|
|
|
//draw a rectangle around the object
|
|
|
|
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2); |
|
|
|
void trackingOptFlow(Mat prev, Mat cur, Mat &output) { |
|
|
|
vector <Point2f> curc_stab; |
|
|
|
Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
|
|
|
ROS_INFO("ready to warp"); |
|
|
|
warpPoints(cur_ftr, curc_stab, T, true); |
|
|
|
ROS_INFO("warped"); |
|
|
|
|
|
|
|
vector <Point2f> objects; |
|
|
|
for(size_t i=0; i < prev_ftr.size(); ++i) { |
|
|
|
float flow_norm = norm(prev_ftr[i] - cur_ftr[i]) / prev.size().height; |
|
|
|
if(flow_norm > MOVEMENT_THRES) |
|
|
|
objects.push_back(cur_ftr[i]); |
|
|
|
} |
|
|
|
|
|
|
|
//write the position of the object to the screen
|
|
|
|
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); |
|
|
|
for(size_t i=0; i < objects.size(); ++i) { |
|
|
|
circle(output, objects[i], 5, Scalar(0, 200, 0), 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
inline bool isFlowCorrect(Point2f u) |
|
|
|
|