|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 110 KiB |
|
After Width: | Height: | Size: 97 KiB |
|
After Width: | Height: | Size: 23 KiB |
|
After Width: | Height: | Size: 22 KiB |
|
After Width: | Height: | Size: 37 KiB |
|
After Width: | Height: | Size: 47 KiB |
|
After Width: | Height: | Size: 22 KiB |
|
After Width: | Height: | Size: 36 KiB |
|
After Width: | Height: | Size: 19 KiB |
@ -0,0 +1,57 @@ |
|||||
|
%%% Algorithme de Levinson-Durbin pour la d\'etermination des param\`etres AR |
||||
|
%%% |
||||
|
%%% entr\'ees : |
||||
|
%%% - xx : signal |
||||
|
%%% - pp : ordre du mod\`ele AR (choisi de mani\`ere ind\'ependante) |
||||
|
%%% - fe : fr\'equence d'\'echantillonnage |
||||
|
%%% |
||||
|
%%% sorties : |
||||
|
%%% - aa : les param\`etres AR |
||||
|
%%% - sigma2 : variance du bruit |
||||
|
%%% - ref : coefficients de r\'eflexion |
||||
|
%%% - ff : fr\'equences auxquelles la dsp a \'et\'e calcul\'ee |
||||
|
%%% - mydsp : la dsp elle-m\^eme |
||||
|
%%% |
||||
|
%%% exemple : fe=32000;f0=440;xx=cos(2*pi*f0/fe*[1:1280]+2*pi*rand(1,1));mylevinsondurbin(xx,4,fe); |
||||
|
%%% |
||||
|
%%% S. Rossignol -- 2012 |
||||
|
|
||||
|
function [aa, sigma2, ref, ff, mydsp] = mylevinsondurbin (xx, pp, fe) |
||||
|
|
||||
|
acf = xcorr(xx, pp+1, 'biased'); %% autocorr\'elation |
||||
|
acf(1:pp+1) = []; %% on enl\`eve la partie n\'egative |
||||
|
acf(1) = real(acf(1)); %% Levinson-Durbin requiert c(1)==conj(c(1)) |
||||
|
|
||||
|
ref = zeros(pp,1); |
||||
|
gg = -acf(2)/acf(1); |
||||
|
aa = [ gg ]; |
||||
|
sigma2 = real( ( 1 - gg*conj(gg)) * acf(1) ); %% real : enl\`eve une \'eventuelle |
||||
|
%% partie imaginaire r\'esiduelle |
||||
|
ref(1) = gg; |
||||
|
for tt = 2 : pp |
||||
|
gg = -(acf(tt+1) + aa * acf(tt:-1:2)') / sigma2; |
||||
|
aa = [ aa + gg*conj(aa(tt-1:-1:1)), gg ]; |
||||
|
sigma2 = sigma2 * ( 1 - real(gg*conj(gg)) ); |
||||
|
ref(tt) = gg; |
||||
|
end; |
||||
|
aa = [1, aa]; |
||||
|
|
||||
|
%%% densit\'e spectrale de puissance |
||||
|
interm2=-j*2*pi/fe*[1:pp]; |
||||
|
df=0.9765625; %%% la dsp est calcul\'ee tous les df Hz |
||||
|
ff=-fe/2:df:fe/2; |
||||
|
|
||||
|
interm3=interm2'*ff; |
||||
|
interm=1.+aa(2:pp+1)*exp(interm3); |
||||
|
mydsp = sigma2./(interm.*conj(interm)); |
||||
|
|
||||
|
% figure(1); |
||||
|
% clf; |
||||
|
% grid on; |
||||
|
% hold on; |
||||
|
% plot(ff,mydsp,'linewidth',2); |
||||
|
% xlabel('frequency (in Hz)','fontsize',20); |
||||
|
% ylabel('magnitude','fontsize',20); |
||||
|
% hold off; |
||||
|
% drawnow; |
||||
|
|
||||
@ -0,0 +1,75 @@ |
|||||
|
%%% Algorithme de Music pour la d\'etermination des param\`etres Music |
||||
|
%%% |
||||
|
%%% entr\'ees : |
||||
|
%%% - xx : signal |
||||
|
%%% - pp : ordre du mod\`ele (choisi de mani\`ere ind\'ependante) |
||||
|
%%% - MM : nombre de coefficients de corr\'elation pris en compte (MM>=pp) |
||||
|
%%% - fe : fr\'equence d'\'echantillonnage |
||||
|
%%% |
||||
|
%%% sorties : |
||||
|
%%% - ff : fr\'equences auxquelles la dsp a \'et\'e calcul\'ee |
||||
|
%%% - mydsp : la dsp elle-m\^eme |
||||
|
%%% |
||||
|
%%% exemples : clear;rand('seed',100*sum(clock));fe=32000;f0=440;tsig=1280;xx=cos(2*pi*f0/fe*[1:tsig]+2*pi*rand(1,1));mymusic(xx,2,10,fe); |
||||
|
%%% clear;rand('seed',100*sum(clock));fe=32000;f0=440;tsig=1280;xx=cos(2*pi*f0/fe*[1:tsig]+2*pi*rand(1,1))+cos(2*pi*(f0+26)/fe*[1:tsig]+2*pi*rand(1,1));mymusic(xx,4,300,fe); |
||||
|
%%% |
||||
|
%%% S. Rossignol -- 2012 |
||||
|
|
||||
|
|
||||
|
%%% utilisation en script : |
||||
|
%clear;rand('seed',100*sum(clock));fe=32000;f0=440;tsig=1280;xx=cos(2*pi*f0/fe*[1:tsig]+2*pi*rand(1,1))+cos(2*pi*(f0+26)/fe*[1:tsig]+2*pi*rand(1,1));pp=4;MM=400; |
||||
|
%clear;rand('seed',100*sum(clock));fe=32000;f0=440;tsig=1280;xx=cos(2*pi*f0/fe*[1:tsig]+2*pi*rand(1,1))+1e-2*randn(1,tsig);pp=2;MM=10; |
||||
|
|
||||
|
|
||||
|
|
||||
|
function [ff, mydsp] = mymusic_matlab(xx, pp, MM, fe) |
||||
|
|
||||
|
|
||||
|
if (MM<=pp) |
||||
|
fprintf(1, 'Il faut absolument MM>pp !!!\n'); |
||||
|
return; |
||||
|
end; |
||||
|
|
||||
|
MM1=MM-1; |
||||
|
res=xx; |
||||
|
xx = xx-mean(xx); |
||||
|
|
||||
|
|
||||
|
%%% corr\'elations |
||||
|
acf = xcorr(xx, MM1, 'biased'); |
||||
|
lMM=length(acf); |
||||
|
rrr1 = acf(MM1+1:lMM)'; |
||||
|
for ii=1:MM1 |
||||
|
rrr1 = [rrr1 acf(MM1+1-ii:lMM-ii)']; |
||||
|
end; |
||||
|
rrr1 = rrr1'; |
||||
|
|
||||
|
|
||||
|
%%% m\'ethode directe pour trouver toutes les valeurs propres |
||||
|
[v, lambda] = eig(rrr1); |
||||
|
lamb = diag(lambda); |
||||
|
[vl,pl] = sort(abs(lamb),'descend'); |
||||
|
|
||||
|
|
||||
|
%%% densit\'e spectrale de puissance |
||||
|
df=0.9765625; %%% la dsp est calcul\'ee tous les df Hz |
||||
|
ff=-fe/2:df:fe/2; |
||||
|
|
||||
|
mydsp=zeros(length(ff),1); |
||||
|
deni=zeros(MM,MM); |
||||
|
for ii=pp+1:MM |
||||
|
deni = deni + v(:,pl(ii))*conj(v(:,pl(ii)))'; |
||||
|
end; |
||||
|
for ii=1:length(ff) |
||||
|
ee = cos(2*pi*ff(ii)*[0:MM1]/fe); |
||||
|
den = conj(ee)*deni*ee'; |
||||
|
mydsp(ii) = abs(1/den); |
||||
|
end; |
||||
|
|
||||
|
|
||||
|
%%% on enl\`eve \'eventuellement une composante non nulle |
||||
|
mydsp = mydsp-min(mydsp); |
||||
|
%mydsp = mydsp/max(mydsp); %%% si on fait \c{c}a, c'est norme 1 |
||||
|
|
||||
|
end |
||||
|
|
||||
|
After Width: | Height: | Size: 40 KiB |
|
After Width: | Height: | Size: 24 KiB |
|
After Width: | Height: | Size: 59 KiB |
|
After Width: | Height: | Size: 43 KiB |
|
After Width: | Height: | Size: 34 KiB |
|
After Width: | Height: | Size: 31 KiB |
|
After Width: | Height: | Size: 17 KiB |
|
After Width: | Height: | Size: 16 KiB |
|
After Width: | Height: | Size: 13 KiB |
|
After Width: | Height: | Size: 38 KiB |
@ -0,0 +1,88 @@ |
|||||
|
clear; |
||||
|
close all; |
||||
|
|
||||
|
% returns sampling frequency in Hz and data |
||||
|
[y,Fs] = audioread('fluteircam.wav'); |
||||
|
|
||||
|
% Fs = sampling frequency, 32000 for fluteircam.wav |
||||
|
lenW = 0.04*Fs; % window of lenW samples, i.e. 40 ms |
||||
|
|
||||
|
df=0.9765625; %%% la dsp est calcul\'ee tous les df Hz |
||||
|
ff=-Fs/2:df:Fs/2; % length 32769 for fluteircam.wav |
||||
|
ffsub = ff(1:11:end); % compression x11, length 2979 |
||||
|
|
||||
|
tt = (0:length(y)-1)/Fs; |
||||
|
ttsub = (1280/2:1280:length(y))/Fs; |
||||
|
|
||||
|
dsps = zeros(length(ffsub), floor((length(y)-lenW+1)/lenW)); |
||||
|
|
||||
|
% dsp fft |
||||
|
T = 1/Fs; % Sampling period |
||||
|
L = lenW; % Length of signal |
||||
|
t = (0:L-1)*T; % Time vector |
||||
|
fftsp = zeros(L/2+1, floor((length(y)-lenW+1)/lenW)); |
||||
|
f = Fs*(0:(L/2))/L; |
||||
|
|
||||
|
for i = 0:floor((length(y)-lenW+1)/lenW) |
||||
|
|
||||
|
% compute dsp AR |
||||
|
[~, ~, ~, ~, mydsp] = mylevinsondurbin(y(lenW*i+1:lenW*(i+1))',200,Fs); |
||||
|
dsps(:,i+1) = mydsp(1:11:end)'; % compression x11, length 2979 |
||||
|
|
||||
|
% compute dsp fft |
||||
|
myfft = fft(blackman(lenW).*y(lenW*i+1:lenW*(i+1))); |
||||
|
P2 = abs(myfft/L); |
||||
|
P1 = P2(1:L/2+1); |
||||
|
P1(2:end-1) = 2*P1(2:end-1); |
||||
|
fftsp(:,i+1) = P1; |
||||
|
end |
||||
|
|
||||
|
% take only positive frequencies for dsp |
||||
|
ffsubp = ffsub(1,(length(ffsub)-1)/2+1:end); |
||||
|
dspsp = dsps((length(dsps)-1)/2+1:end,:); |
||||
|
|
||||
|
% plot |
||||
|
figure() |
||||
|
plot(tt,y) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('amplitude (u.a.)') |
||||
|
title('signal fluteircam') |
||||
|
|
||||
|
figure() |
||||
|
surf(ttsub,ffsub,dsps,'EdgeColor','None'); |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
zlabel('amplitudes (u.a.)') |
||||
|
title('Full DSP AR signal fluteircam') |
||||
|
|
||||
|
figure() |
||||
|
surf(ttsub,ffsubp,dspsp,'EdgeColor','None'); |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
zlabel('amplitudes (u.a.)') |
||||
|
title('DSP AR signal fluteircam') |
||||
|
|
||||
|
figure() |
||||
|
surf(ttsub,f,fftsp,'EdgeColor','None'); |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
zlabel('amplitudes (u.a.)') |
||||
|
title('DSP FFT signal fluteircam') |
||||
|
|
||||
|
|
||||
|
% take max amplitude frequency |
||||
|
[maxDspsp, maxIndDspsp] = max(dspsp); |
||||
|
maxFfsubp = ffsubp(maxIndDspsp); |
||||
|
figure |
||||
|
plot(ttsub,maxFfsubp) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
title('Frequency max DSP AR signal fluteircam') |
||||
|
|
||||
|
[maxFftsp, maxIndFftsp] = max(fftsp); |
||||
|
maxF = f(maxIndFftsp); |
||||
|
figure |
||||
|
plot(ttsub,maxF) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
title('Frequency max DSP FFT signal fluteircam') |
||||
@ -0,0 +1,71 @@ |
|||||
|
clear; |
||||
|
close all; |
||||
|
|
||||
|
% returns sampling frequency in Hz and data |
||||
|
[y,Fs] = audioread('myson.wav'); |
||||
|
|
||||
|
% Fs = sampling frequency, 32000 for fluteircam.wav |
||||
|
lenW = 0.04*Fs; % window of lenW samples, i.e. 40 ms |
||||
|
|
||||
|
df=0.9765625; %%% la dsp est calcul\'ee tous les df Hz |
||||
|
ff=-Fs/2:df:Fs/2; % length 32769 for fluteircam.wav |
||||
|
ffsub = ff(1:11:end); % compression x11, length 2979 |
||||
|
|
||||
|
tt = (0:length(y)-1)/Fs; |
||||
|
ttsub = (lenW/2:lenW:length(y))/Fs; |
||||
|
|
||||
|
dsps = zeros(length(ffsub), floor((length(y)-lenW+1)/lenW)); |
||||
|
|
||||
|
% dsp fft |
||||
|
T = 1/Fs; % Sampling period |
||||
|
L = lenW; % Length of signal |
||||
|
t = (0:L-1)*T; % Time vector |
||||
|
fftsp = zeros(L/2+1, floor((length(y)-lenW+1)/lenW)); |
||||
|
fftspCpx = zeros(L/2+1, floor((length(y)-lenW+1)/lenW)); |
||||
|
f = Fs*(0:(L/2))/L; |
||||
|
|
||||
|
for i = 0:floor((length(y)-lenW+1)/lenW) |
||||
|
|
||||
|
% compute dsp AR |
||||
|
[~, ~, ~, ~, mydsp] = mylevinsondurbin(y(lenW*i+1:lenW*(i+1))',200,Fs); |
||||
|
dsps(:,i+1) = mydsp(1:11:end)'; % compression x11, length 2979 |
||||
|
|
||||
|
% compute dsp fft |
||||
|
myfft = fft(y(lenW*i+1:lenW*(i+1))); |
||||
|
P2 = abs(myfft/L); |
||||
|
P1 = P2(1:L/2+1); |
||||
|
P1(2:end-1) = 2*P1(2:end-1); |
||||
|
fftsp(:,i+1) = P1; |
||||
|
end |
||||
|
|
||||
|
% take only positive frequencies for dsp |
||||
|
ffsubp = ffsub(1,(length(ffsub)-1)/2+1:end); |
||||
|
dspsp = dsps((length(dsps)-1)/2+1:end,:); |
||||
|
|
||||
|
% plot |
||||
|
figure() |
||||
|
plot(tt,y) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('amplitude (u.a.)') |
||||
|
title('signal fluteircam') |
||||
|
|
||||
|
% figure() |
||||
|
% surf(ttsub,ffsub,dsps,'EdgeColor','None'); |
||||
|
% xlabel('temps (s)') |
||||
|
% ylabel('fréquences (Hz)') |
||||
|
% zlabel('amplitudes (u.a.)') |
||||
|
% title('Full DSP AR signal fluteircam') |
||||
|
|
||||
|
figure() |
||||
|
imagesc(ttsub,ffsubp,dspsp) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
ylim([0 600]) |
||||
|
title('Amplitude DSP AR signal fluteircam') |
||||
|
|
||||
|
figure() |
||||
|
imagesc(ttsub,f,fftsp) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
ylim([0 600]) |
||||
|
title('Amplitude DSP FFT signal fluteircam') |
||||
@ -0,0 +1,82 @@ |
|||||
|
|
||||
|
|
||||
|
%rand('seed',100*sum(clock)); |
||||
|
%fe=32000; |
||||
|
%f0=440; |
||||
|
%tsig=1280; |
||||
|
%xx=cos(2*pi*f0/fe*[1:tsig]+2*pi*rand(1,1))+cos(2*pi*(f0+40)/fe*[1:tsig]+2*pi*rand(1,1))+cos(2*pi*2*f0/fe*[1:tsig]+2*pi*rand(1,1))+cos(2*pi*(2*f0+40)/fe*[1:tsig]+2*pi*rand(1,1)); |
||||
|
%xx=cos(2*pi*f0/fe*[1:tsig]+2*pi*rand(1,1))+1e-2*randn(1,tsig); |
||||
|
%pp=2; |
||||
|
%MM=10; |
||||
|
|
||||
|
% returns sampling frequency in Hz and data |
||||
|
[xx,fe] = audioread('fluteircam.wav'); |
||||
|
xx = xx'; |
||||
|
|
||||
|
pp=4; |
||||
|
MM=210; |
||||
|
|
||||
|
lenW = 0.04*fe; |
||||
|
|
||||
|
maxFreqs = []; |
||||
|
|
||||
|
for i = 0:floor((length(xx)-lenW+1)/lenW) |
||||
|
xxsub = xx(1,lenW*i+1:lenW*(i+1)); |
||||
|
[ff, mydsp] = mymusic_matlab(xxsub,pp,MM,fe); |
||||
|
|
||||
|
mydspP = mydsp(floor(length(mydsp)/2):end,:); |
||||
|
ffP = ff(:,floor(length(mydsp)/2):end); |
||||
|
[maxi,ind] = max(mydspP); |
||||
|
maxFreq = ffP(ind); |
||||
|
maxFreqs = [maxFreqs maxFreq]; |
||||
|
end |
||||
|
|
||||
|
figure() |
||||
|
tt = (lenW/2:lenW:length(xx))/fe; |
||||
|
plot(tt,maxFreqs) |
||||
|
xlabel('temps (s)') |
||||
|
ylabel('fréquences (Hz)') |
||||
|
title('Frequency max DSP MUSIC signal flureircam (p = 2, M = 200)') |
||||
|
|
||||
|
%%% figures |
||||
|
% figure(); |
||||
|
% clf; |
||||
|
% grid on; |
||||
|
% hold on; |
||||
|
% plot(ff,mydsp,'linewidth',2); |
||||
|
% xlabel('frequency (in Hz)','fontsize',20); |
||||
|
% ylabel('magnitude','fontsize',20); |
||||
|
% title('zoom MUSIC'); |
||||
|
% xlim([400 506]); |
||||
|
% hold off; |
||||
|
|
||||
|
% figure(); |
||||
|
% clf; |
||||
|
% grid on; |
||||
|
% hold on; |
||||
|
% plot(ff,mydsp,'linewidth',2); |
||||
|
% xlabel('frequency (in Hz)','fontsize',20); |
||||
|
% ylabel('magnitude','fontsize',20); |
||||
|
% title('MUSIC'); |
||||
|
% hold off; |
||||
|
% drawnow; |
||||
|
|
||||
|
% % montrer intéret paramétrique par rapport à FFT |
||||
|
% figure(); |
||||
|
% fftxx = abs(fftshift(fft(xx))); % fftshift permet de passer de la fft entre 0 et fe à la fft entre -fe/2 et fe/2 |
||||
|
% freq = linspace(-fe/2,fe/2,length(fftxx)); |
||||
|
% plot(freq,fftxx); |
||||
|
% grid on; |
||||
|
% xlabel('fréqunce (Hz)'); |
||||
|
% ylabel('amplitude (u.a.)'); |
||||
|
% title('fft'); |
||||
|
% |
||||
|
% figure(); |
||||
|
% xx = [xx zeros(1,32768-length(xx))]; % 2^15 = 32768 |
||||
|
% fftxx = abs(fftshift(fft(xx))); |
||||
|
% freq = linspace(-fe/2,fe/2,length(fftxx)); |
||||
|
% plot(freq,fftxx); |
||||
|
% grid on; |
||||
|
% xlabel('fréqunce (Hz)'); |
||||
|
% ylabel('amplitude (u.a.)'); |
||||
|
% title('fft zero padding'); |
||||